- 1 Solve each of the following equations, giving your answers in exact form.
 - (i) $6 \arcsin x \pi = 0.$ [2]
 - (ii) $\arcsin x = \arccos x$. [2]
- 2 The curves in parts (i) and (ii) have equations of the form $y = a + b \sin cx$, where a, b and c are constants. For each curve, find the values of a, b and c.

3 Given that
$$\arcsin x = \arccos y$$
, prove that $x^2 + y^2 = 1$. [Hint: let $\arcsin x = \theta$.] [3]

- 4 (i) State the period of the function $f(x) = 1 + \cos 2x$, where x is in degrees. [1]
 - (ii) State a sequence of two geometrical transformations which maps the curve $y = \cos x$ onto the curve y = f(x). [4]
 - (iii) Sketch the graph of y = f(x) for $-180^\circ < x < 180^\circ$. [3]
- 5 Fig. 7 shows the curve y = f(x), where $f(x) = 1 + 2 \arctan x$, $x \in \mathbb{R}$. The scales on the *x* and *y*-axes are the same.

(i) Find the range of f, giving your answer in terms of π .	[3]
(ii) Find $f^{-1}(x)$, and add a sketch of the curve $y = f^{-1}(x)$ to the copy	of Fig. 7. [5]

6 Fig. 8 shows part of the curve $y = x \cos 3x$.

The curve crosses the *x*-axis at O, P and Q.

- (i) Find the exact coordinates of P and Q. [4]
- (ii) Find the exact gradient of the curve at the point P.

Show also that the turning points of the curve occur when $x \tan 3x = \frac{1}{3}$. [7]

- (iii) Find the area of the region enclosed by the curve and the *x*-axis between O and P, giving your answer in exact form. [6]
- 7 Sketch the curve $y = 2 \arccos x$ for $-1 \le x \le 1$.

[3]

8 Fig. 6 shows the curve y = f(x), where $f(x) = \frac{1}{2} \arctan x$.

- (i) Find the range of the function f(x), giving your answer in terms of π . [2]
- (ii) Find the inverse function $f^{-1}(x)$. Find the gradient of the curve $y = f^{-1}(x)$ at the origin. [5]
- (iii) Hence write down the gradient of $y = \frac{1}{2} \arctan x$ at the origin. [1]
- ⁹ Given that $\arcsin x = \frac{1}{6}\pi$, find x. Find $\arccos x$ in terms of π . [3]