1 Solve each of the following equations, giving your answers in exact form.
(i) $6 \arcsin x-\pi=0$.
(ii) $\arcsin x=\arccos x$.

2 The curves in parts (i) and (ii) have equations of the form $y=a+b \sin c x$, where a, b and c are constants. For each curve, find the values of a, b and c.
(i)

(ii)

3 Given that $\arcsin x=\arccos y$, prove that $x^{2}+y^{2}=1$. [Hint: let $\arcsin x=\theta$.]

4 (i) State the period of the function $\mathrm{f}(x)=1+\cos 2 x$, where x is in degrees.
(ii) State a sequence of two geometrical transformations which maps the curve $y=\cos x$ onto the curve $y=\mathrm{f}(x)$.
(iii) Sketch the graph of $y=\mathrm{f}(x)$ for $-180^{\circ}<x<180^{\circ}$.

5 Fig. 7 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+2 \arctan x, x \in \mathbb{R}$. The scales on the x - and y-axes are the same.

Fig. 7
(i) Find the range of f , giving your answer in terms of π.
(ii) Find $\mathrm{f}^{-1}(x)$, and add a sketch of the curve $y=\mathrm{f}^{-1}(x)$ to the copy of Fig. 7 .
$6 \quad$ Fig. 8 shows part of the curve $y=x \cos 3 x$.
The curve crosses the x-axis at O, P and Q .

Fig. 8
(i) Find the exact coordinates of P and Q .
(ii) Find the exact gradient of the curve at the point P .

Show also that the turning points of the curve occur when $x \tan 3 x=\frac{1}{3}$.
(iii) Find the area of the region enclosed by the curve and the x-axis between O and P , giving your answer in exact form.

7 Sketch the curve $y=2 \arccos x$ for $-1 \leqslant x \leqslant 1$.

8 Fig. 6 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{2} \arctan x$.

Fig. 6
(i) Find the range of the function $\mathrm{f}(x)$, giving your answer in terms of π.
(ii) Find the inverse function $\mathrm{f}^{-1}(x)$. Find the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the origin. [5]
(iii) Hence write down the gradient of $y=\frac{1}{2} \arctan x$ at the origin.

